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Summary. The “parareal in time” algorithm introduced in Lions et al. [2001] en-
ables parallel computation using a decomposition of the interval of time integration.
In this paper, we adapt this algorithm to solve the challenging Navier-Stokes prob-
lem. The coarse solver, based on a larger timestep, may also involve a coarser dis-
cretization in space. This helps to preserve stability and provides for more significant
savings.

1 Introduction

The “parareal in time” algorithm was introduced in Lions et al. [2001] to allow
parallel computations based on a decomposition of the interval of time integra-
tion. This algorithm, which can be interpreted as a predictor-corrector scheme
(see Bal and Maday [2002] and Baffico et al. [2002]), involves a prediction step
based on a coarse approximation and propagation of the phenomenon and a
correction step computed in parallel and based on a fine approximation. Sig-
nificant speedups are observed (see, in particular, Bal [2003] on this aspect).
A combination of the parareal in time algorithm with more conventional do-
main decomposition approaches was presented in Maday and Turinici [2003]
and exploits both space and time concurrency.

Many applications of the method have already been performed, but this
paper is the first that targets the challenging Navier-Stokes problem. The
coarse solver is based on a large timestep but also on a coarse discretization
in space, which further reduces serial overhead.

2 The Basic Algorithm on a Simple Equation

Consider the following time dependent problem:

∂y

∂t
+Ay = 0, y(T0) = y0,
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where, for the sake of simplicity, A does not depend on time. We introduce
the propagator E such that y(τ) = Eτ (y0). Let Tn = n∆T , n = 0, ..., N
be instants at which we wish to consider snapshots of the solution. Then
y(Tn) = ETn

(y0) = E∆T (y(Tn−1)), from the semigroup property of E .
In most cases E is not realizable and can only be approximated; for in-

stance, we can introduce a fine and precise propagator F defined by an Euler
scheme, either implicit or explicit. Similar to the continuous solution, we have
the approximations y(Tn) ' λn = FTn(y0) = F∆T (λn−1). Clearly, the ap-
proximation process is sequential.

The parareal algorithm assumes we are given another propagator denoted
as G. It is cheaper (and consequently less accurate) than F . One can think of
F as based on an Euler scheme with a very small timestep δt and G as based
on an Euler scheme with the larger timestep ∆T . We present and implement
here another possibility, as proposed in Lions et al. [2001], in which G is based
on a coarse approximation in space as well.

The iterative process λk+1
n = G∆T (λk+1

n−1) + F∆T (λk
n−1)− G∆T (λk

n−1) pro-
vides a converging sequence toward λn. Our interest in this predictor-corrector
scheme lies in the fact that after iteration k and before iteration k + 1 starts,
we can compute in parallel the corrections F∆T (λk

n−1)−G∆T (λk
n−1) for all n;

thus the only sequential part of the algorithm is the evaluation of the coarse
operator.

3 The Parareal in Time Algorithm for Navier-Stokes

We apply the parareal scheme to the incompressible Navier-Stokes equations,

∂u
∂t

+ u · ∇u = −∇p +
1

Re
∇2u in Ω, ∇ · u = 0 in Ω, (1)

with prescribed boundary and initial conditions for the velocity, u. Here, p is
the pressure, Re the Reynolds number and Ω is a regular domain of IRd.

The temporal discretization is based on the high-order operator-splitting
methods developed in Maday et al. [1990] that generalize the characteristics
method of Pironneau [1982]. The left-hand side of (1) is recast as a material
derivative, which is discretized by using a stable rth-order backward difference
formula (BDFr):

∂u
∂t

+ u · ∇u =
Du
Dt

≈ 1
∆t

(
β0un+1 −

r∑

i=1

βiun+1−i

)
. (2)

For BDF1, (β0, β1) = (1, 1), and for BDF2, (β0, β1, β2) = ( 3
2 , 4

2 , −1
2 ). The

values un+1−i represent the values of u at the foot of the characteristic asso-
ciated with each gridpoint and are computed by solving the linear convective
subproblem, (uj)t + u · ∇uj = 0, t ∈ (tn+1−i, tn+1], with initial condition
uj(tn+1−i) = un+1−i for j = n + 1 − i, i = 1, . . . , r. This leads to a linear
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symmetric Stokes problem to be solved implicitly at each step and permits
timestep sizes, ∆t, corresponding to convective CFL numbers greater than
unity, thus significantly reducing the number of Stokes solves.

3.1 Finite Element Approximation in Space

The finite element method is based on an compatible choice of spaces for
the velocity and the pressure: the Taylor-Hood method. The time discretiza-
tion is a characteristics method of order 1 for the convection and implicit for
the Stokes operator. The algebraic system resulting from the discretization
is solved through a Cahouet-Chabart algorithm. The problem solved corre-
sponds to a 2-D flow past a cylinder of diameter 2 centered at the origin. The
upstream boundary is located at a distance 5 from the center of the cylinder
and the downstream boundary at a distance 10.

A special consideration when using the parareal scheme in conjunction
with a semi-implicit timestepping scheme is that the step size be small enough
to ensure stability. This is a particular concern for the coarse solver, G, where
one wants to choose a large timestep in order to minimize the serial over-
head. Fortunately, the characteristics scheme allows this, provided that the
subintegration timestep satisfies the governing stability criterion.

3.2 Spectral Approximation in Space

The spectral element method (SEM) for the Stokes problem is also based
on a compatible choice of spaces : it is the IPM × IPM−2 discretization in-
troduced in Maday and Patera [1989]. The discretization spaces are XM :=
{v ∈ H1

0 (Ω)d,v|Ωe ∈ IPM (Ωe)d, e = 1, ..., E} for the velocity and Y M := {q ∈
L2(Ω), q|Ωe ∈ IPM−2(Ωe), e = 1, ..., E}, for the pressure. Here, IPM (Ωe), e =
1, ..., E is the space of polynomials of partial degree ≤ M on each of the E
nonoverlapping elements, Ωe, whose union composes Ω. At present, we re-
strict our attention to cases where Ω is a rectangular domain comprising a
tensor-product array of E = Ex × Ey elements allowing the use of the fast
diagonalization method. Details of the SEM formulation and implementation
can be found in Fischer [1997].

To implement the parareal scheme, we require a solver of the form un+1 =
F∆T (un). That is, given an initial value un, the solver propagates the solution
over a time interval (Tn, Tn+1] to produce a result un+1. We thus need to
“restart” the computation for each application of F and G: we use Richardson
extrapolation and combine two steps of size ∆t/2 with one of size ∆t to yield
an O(∆t3) local error at the start of each F (∆t = δt) or G (∆t = ∆T )
substep.
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4 Further Reduction of the Cost of the Coarse Operator

In nondimensional time units, the parareal single- and P -processor solution
times and parallel speedup are, respectively,

τ1 =
T

δt
, τP = K

(
1
P

T

δt
+ α

T

∆T

)
, SP :=

τ1

PτP

=
P

K
(
1 + αP δt

∆T

) , (3)

The P -processor estimates in (3) neglect communication overhead and simply
reflect the extra work resulting from additional iterations (K) and the serial
coarse propagation (αT/∆T ). The factor α reflects the relative per-step cost
of F∆T and G∆T . To achieve reasonable scalability we need K and αP δt

∆T to
be order unity.

Here, we propose to use propagators based not only on different timesteps,
but also on different spectral degrees.

4.1 The Finite Element Context

The reduction is obtained by using a fine grid defined by dividing each coarse
triangle into four triangles. The resulting number of vertices is equal to 1021
in the coarse mesh (H) and 3994 in the fine mesh (h). The coarse operator
G∆T is based on ∆T and the coarse grid H. The proposed parareal in time
scheme is then

Uk+1
n+1 = Πh

HG∆T (ΠH
h Uk+1

n ) + F∆T (Uk
n)−Πh

HG∆T (ΠH
h Uk

n), (4)

The operator that allows one to go from the coarse mesh to the fine one
(denoted as Πh

H) and reciprocally (i.e., ΠH
h ) can be either the interpolation

operator Ih (resp. IH) or the L2 projection on discretely divergence free func-
tions Πh (resp. ΠH).

4.2 The Spectral Context

We assume that we have a coarse operator G∆T based on ∆T and a spectral
degree M̃ together with a fine solver F∆T based on δt and a spectral degree
M > M̃ . The proposed parareal in time scheme is then

Uk+1
n+1 = ΠM

M̃
G∆T (ΠM̃

M Uk+1
n ) + F∆T (Uk

n)−ΠM
M̃
G∆T (ΠM̃

M Uk
n), (5)

where ΠM
M̃

is the L2 prolongation operator from XM̃ onto XM and ΠM̃
M is

the L2 projection operator from XM onto XM̃ .
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Fig. 1. Time history of the vertical component of the velocity at point (1.5, 0) for
the parareal algorithm with coarse operator based on coarse spatial and temporal
discretization. (a) Comparison of interpolation and L2 projection operators. (b)
Comparison K = 1, K = 2, and standard serial algorithms.

5 Results

5.1 The Finite Element Context

We have run the cylinder simulation at Re = 200, starting with an initial
condition made of a flow computed by running the coarse simulation over a
time equal to 10. We have used a fine timestep equal to 0.02 and a coarse
timestep equal to 0.2. The simulation has been run over successive time inter-
vals of size 2 corresponding to P = 10. Over these intervals, we have run the
parareal scheme with small numbers of iterations because of the small size of
the intervals.

We have first compared the two types of operators to go from one mesh
onto the other one. The simple interpolation operator appears to be unstable:
the simulation blows up, for example, with the use of the strategy three coarse
sweeps alternated with two fine sweeps, corresponding to K=3. On the con-
trary, the use of an L2-type projection operator on the discrete divergence-free
functions is stable throughout these simulations. These results are illustrated
in Fig. 1a, where we plot the time history of the vertical component of the
velocity at a point situated on the axis of the flow at a distance 1.5 down-
stream of the center of the cylinder. To check the accuracy of the method, we
have computed the solution corresponding to the fine timestep as a reference
and compared the parareal scheme with 2 coarse + 1 fine (K=1) and 3 coarse
+ 2 fine (K=2) to the reference solution. The results are plotted in Fig. 1b,
and the solution for K=2 is quite good. Note that the plot representing the
history at this point is much discriminating because of the complexity of the
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Fig. 2. Relative error in the v-component of the solution, versus time, for the SEM
solution of the Orr-Sommerfeld test problem with E = 15, M = 15, and δt = .005.
(a) single partition with K = 3, (b) tripartition with K = 1.

flow. For longer times, we have checked that the period of the flow and the
time to establish the periodic flow are very well captured by the parareal
scheme for this situation.

These are only preliminary runs, from which we conclude that the pro-
jection operator performs better than the interpolation one. We will seek to
optimize the timestep choice in order to be able to get an accurate solution
with a lower number of iterations. Let us note that these simulations have
been done effectively in parallel by using the code Freefem.

5.2 The Spectral Context

We have applied the parareal/SEM algorithm to the Orr-Sommerfeld problem
studied in Fischer [1997]. The computational domain is Ω = [0, 2π]× [−1, 1],
with periodic boundary conditions in x and homogeneous Dirichlet conditions
on y = ±1. The growth of a small-amplitude (10−5) Tollmien-Schlichting
wave, superimposed on plane Poiseuille chanel flow at Re = 7500, is mon-
itored and compared with linear theory over the interval t ∈ [0, 32], which
corresponds to ≈ 1.25 periods of the traveling wave solution.

Figure 2a shows the relative L∞ (maximum pointwise) error in the y-
component of velocity versus time for an E=15 element discretization using
BDF2 with M=15, ∆tF = δt = .005 for F∆T , and M̃ = 15, ∆tG = .333 =
∆T/3 for G∆T . The solid line shows the discretization error for the standard
serial algorithm (BDF2,∆t = .005). The point plots show the error in the
solution for the first coarse sweep (g0) and for the first three fine sweeps
(f1, f2, and f3). The number of coarse and fine substeps per iteration is 32,
corresponding to a P = 32 processor simulation. For this problem, the scheme
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Fig. 3. Error histories for configuration as in Fig. 2b: (a) using varying fine/coarse
approximation orders (M ,M̃); ◦ = (13,13), × = (15,13), ∗ = (15,15); and (b) (M ,M̃)
= (15,15) without Richardson extrapolation.

converges in K = 3 iterations. Each coarse-grid step, G∆T (un), is computed
by using three steps of size ∆tG = 1/3, plus two additional steps for the
Richardson extrapolation, corresponding to α = 5. Based on (3), the estimated
speedup is S32 ≈ 6.

To reduce ∆T and, hence, K, we also consider applying the parareal
scheme to subintervals of [0, T ], where the initial condition on each inter-
val is taken to be the K = 1 solution from the preceding interval. The scheme
requires an initial G∆T sweep (k = 0), followed by a single F∆T and G∆T cor-
rection (k = 1 =: K). The errors after the G∆T sweeps are shown in Fig. 2b.
Here, three subintervals are used, with δt = .005, and ∆T = ∆tG = 67δt.
Given that there are two coarse sweeps per interval, each with a cost of
three Navier-Stokes solves (because of the Richardson extrapolation), we have
α = 6, corresponding to a speedup of S32 = 8.3.

We next consider the coarse approximation in space for G∆T , given by
(5). Here, one must be careful that the temporal errors do not dominate the
spatial errors. Otherwise, perceived benefits from reducing M̃ could equally
well be gained through reductions in both M and M̃ . We verify that this is
not the case by plotting in Fig. 3a the errors for the tripartition algorithm of
Fig. 2b using discretization pairs (M, M̃)=(15,15), (15,13), and (13,13). The
error for the (15, 13) pairing is almost the same as for the (15, 15) case. The
coarse-grid solve cost, however, is significantly reduced. For the SEM in two
dimensions, this cost scales as M̃3, so we may expect α ≈ (13/15)36, which
implies S32 = 11.2 for the three-step Richardson scheme.

The Richardson iteration was chosen for programming convenience. Other
approaches with lower cost that also have an O(∆t3) local truncation er-
ror could be used for the initial coarse step. For example, one could employ
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a semi-implicit scheme combining Crank-Nicolson and second-order Runge-
Kutta that would require only a single set of system solves, thus effectively
reducing α threefold. The corresponding speedup for α ≈ 2(13/15)3 would be
S32 = 19.7. Note that simply dropping the Richardson extrapolation in favor
of BDF1 has disastrous consequences, as illustrated by the error behavior in
Fig. 3b.
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